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Description  of  satellite  instrumentation  

As described in van Donkelaar et al. (2010; 2013), the Unconstrained (UC) and Optimal 

Estimation (OE) PM2.5 datasets use data from the MODIS (MODerate resolution Imaging 

Spectroradiometer) instruments. UC used MODIS onboard the Terra satellite, while OE used 

MODIS onboard both Terra and Aqua. Both MODIS instruments provide near-daily global 

AOD coverage in the absence of clouds from a polar orbiting, sun-synchronous orbit. Quality 

assured collection (version) 5 MODIS AOD at 10 km × 10 km over land (Levy et al. 2007) has 

been validated such that at least two-thirds of its retrievals are within ±(0.05 + 15%) using 

Aerosol Robotic Network (Holben et al. 2001) measurements of AOD (Remer et al. 2008).  

Concerns have been raised about drift in MODIS collection 5 over land (Zhang and Reid 2010).  

We used this dataset only for long-term averages (not trends). 

The MISR (Multi-angle Imaging SpectroRadiometer) instrument onboard the Terra satellite is 

used for the UC dataset (van Donkelaar et al. 2010) and trends (Boys et al. 2014). MISR 

observes radiation leaving the top of the atmosphere in four spectral bands (0.446, 0.558, 0.672 

and 0.866 µm), each at nine viewing angles (±70.5º, ±60.0º, ±45.6º, ±25.1º and nadir). MISR 

typically takes 6 to 9 days for complete global in the absence of clouds. The MISR AOD 

retrieval algorithm at 17.6 km × 17.6 km (Diner et al. 2005; Martonchik et al. 2002; Martonchik 

et al. 2009) has been validated such that two-thirds of retrievals fall within the maximum of 

±(0.05 or 20%) of ground truth observations (Kahn et al. 2005), and has reliable trend 

information over land (Zhang and Reid 2010). 

The SeaWiFS (Sea-viewing Wide Field-of-view Sensor) instrument provides near-daily global 

coverage at 8 wavelengths from a sun-synchronous orbit. The Deep Blue algorithm has recently 
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been applied to SeaWiFS AOD retrieval at a resolution of 13.5 km (Hsu et al. 2013), providing a 

well-calibrated retrieval of global AOD from 1998-2010 suitable for trend studies (Hsu et al. 

2012). High quality SeaWiFS AOD has been validated such that at least two-thirds of retrievals 

are within ±(0.05 + 20%) (Sayer et al. 2012). 

Daily AOD retrievals from each instrument are regridded onto a regular global 0.1° × 0.1° grid 

using an area-weighted average prior to relating to PM2.5. 

Description  of  the  GEOS-Chem  chemical  transport  model  

The GEOS-Chem chemical transport model (http://geos-chem.org) solves for the spatial and 

temporal evolution of atmospheric aerosol and gaseous compounds using meteorological data 

sets, emission inventories, and equations that represent the physics and chemistry of the 

atmosphere. We used GEOS-Chem to relate AOD to PM2.5 mass and surface area, and to 

provide prior estimates with which to constrain the OE satellite retrievals of AOD. 

Detailed simulation descriptions are contained within the corresponding publications for UC 

(van Donkelaar et al. 2010), OE (van Donkelaar et al. 2013) and SeaWiFS&MISR (Boys et al. 

2014). A major distinction between these simulations are the assimilated meteorological fields 

used for UC (GEOS-4), OE (GEOS-5) and SeaWiFS&MISR (MERRA). All fields were 

provided by the Goddard Earth Observing System and represented current versions of available 

meteorology at the original time of each publication. All simulations were performed globally at 

2° × 2.5°. OE additionally used three nested 1/2° × 2/3° regions overs North America, Europe 

and eastern Asia. 

All simulations share a similar treatment of aerosol that include the sulphate-ammonium-nitrate-

water system (Park et al. 2004), primary carbonaceous aerosols (Park et al. 2003), secondary 
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organic aerosols (Henze et al. 2008), sea salt (Alexander et al. 2005), and mineral dust (Fairlie et 

al. 2007). 

Description of  satellite-derived PM2.5  surface area  

AOD is more directly related to PM2.5 surface area than PM2.5 mass since light extinction is 

proportional to particle surface area (not volume) and surface area does not require assumptions 

about particle densities. Satellite-derived estimates of surface area can, therefore, be readily 

created following the approaches established for PM2.5 mass. We produced such estimates of 

surface area by applying to satellite (MODIS, MISR and SeaWiFS) GEOS-Chem simulations of 

coincident AOD to ground-level surface area of particles with aerodynamic diameter smaller 

than 2.5 µm which we refer to as PM2.5 surface area. OE, UC, and SeaWiFS&MISR-based 

surface area was produced using the simulations and methods described for PM2.5 in van 

Donkelaar et al. (2013) and van Donkelaar et al. (2010), respectively, and combined following 

the approach outlined in the main manuscript. Figure S1 shows the resultant decadal mean PM2.5 

surface area for comparison with Figure 4. 

Description  of  ground-level monitor sources from established  
networks  

Established PM2.5 networks provide a robust source of evaluation for satellite-derived PM2.5 

concentrations due to their long-term observation period and consistent measurement practices.  

Ground-level Canadian PM2.5 observations were obtained from the National Air Pollution 

Surveillance network (NAPS; http://www.etc.cte.ec.gc.ca/NAPS/index_e.html), excluding 

industrial sites. American observations were taken from sites of the Interagency Monitoring of 

Protected Visual Environments network (IMPROVE; 
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http://vista.cira.colostate.edu/improve/Data/data.htm) and from the Environmental Protection 

Agency Air Quality System that employ the Federal Reference Method (FRM; 

http://www.epa.gov/air/data/index.html). PM2.5 measurements at background sites from the 

European air quality database (Airbase; http://acm.eionet.europa.eu/databases/airbase/) and 

European Monitoring and Evaluation Programme (EMEP; Torseth et al. 2012) were used over 

Europe. 
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Figure S1.  Global decadal (2001-2010) mean PM2.5  surface areas. The inset map displays GBD regional population-weighted mean 

surface area. The logarithmic color scale follows that used for Figures 1-4.  
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Figure S2.  PM2.5  annual trend over 1998-2012. The intensity of the colorscale provides a measur e of statistical significance. Inset  

gives population-weighted mean values within GBD-defined regions. Grey areas denote water or missing data.  
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Figure S3. Three-year running mean of satellite-derived dust-and-seasalt-removed PM2.5  over sample regions of significant trends.  A 

common, logarithmic color scale is used for Figures 1-4.   
8 



 
 

 

    
     
       
       
       
       
       
       
       
      

       
       
       

 

Figure S4.  PM2.5  time-series for New Delhi. Black dots and vertical lines denote monthly mean  

and 25th-75th  percentile of satellite-derived values. Trend and 95% confidence intervals based on   

these values are provided in the inset. PM2.5  values collected from the literature are plotted with 

each number and color corresponding to a different source. Specific colors and numbers are  

referenced below. Differences in instrumentation, method ology and site selection inhibit the use  

of these disparate values for trends, but are provided for comparative purposes. Horizontal lines   

correspond to the measurement duration.  

Figure S4 Key  

No. Color Years Reference 
1 ● 2001–2002 Chowdhury 2004 
2 ● 2010 Kaushar et al. 2013 
3 ● 2003 Kumar et al. 2007 
4 ● 2011 Tiwari et al. 2013a 
5 ● 2010–2011 Tiwari et al. 2013b 
6 ● 2007–2008 Srivastava et al. 2012 
7 ● 2005 Tiwari et al. 2008 
8 ● 2007 Tiwari et al. 2009 
9 ● 2001–2002 World Bank 2004 
10 ● 2007–2010 Hyvarinen et al. 2010 
11 ● 2008–2009 Hyvarinen et al. 2011 
12 ● 2010 Bisht et al. 2013 
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Figure  S5. PM2.5  time-series  for Kuwait. Black dots  and vertical  lines  denote  monthly mean and 
25th-75th  percentile  of  satellite-derived values. Trend and 95% confidence  intervals  based on 
these  values  are  provided in the  inset. PM2.5  values  collected from  the  literature  are  plotted with 
each number and color corresponding to a  different  source. Specific  colors  and numbers  are  
referenced below.  Differences  in instrumentation, methodology and site  selection inhibit  the  use  
of  these  disparate  values  for trends, but  are  provided for comparative  purposes. Horizontal  lines  
correspond to the measurement duration.  

Figure S5 Key 

No. Color Years Reference 
1 ● 2004–2005 Brown et al. 2008 
2 ● 2004–2005 Alolayan et al. 2013 
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Figure S6.  PM2.5  time-series for Beijing. Black dots and vertical lines denote monthly mean and 

25th-75th  percentile of satellite-derived values. Trend and 95% confidence intervals based on 

these values are provided in the inset.  PM2.5  values collected from the literature are plotted with 

each number and color corresponding to a different source. Specific colors and numbers are    

referenced below. Differences in instrumentation, methodology and site selection inhibit the use  

of these disparate values for trends, but are provided for comparative purposes. Horizontal lines  

correspond to the measurement duration.  
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Figure S6 Key 

No. Color Years Reference 
● 2001–2003 Dan et al. 2004 

● 2005–2006 He et al. 2012 

● 2005 Pathak et al. 2011 

● 2002–2003 Han et al. 2005 

● 2004 Song et al. 2007 

● 2000–2003 Wang et al. 2005 

● 2004 Wang et al. 2007 

● 2005–2006 Yang et al. 2011 

● 1999–2000 Yang et al. 2005 

● 2000 Zheng et al. 2005 

● 1999–2000 He et al. 2001 

● 2002–2004 Hopke et al. 2008 

● 2005–2007 Schleicher et al. 2011 

● 2002–2003 Sun et al. 2004 

● 2005–2007 Wang et al. 2009 

● 2005–2007 Zhao et al. 2009 

● 2005 Zhou et al. 2009 

● 2007 Deng et al. 2011 

● 2003 Cao et al. 2007 

● 2001–2002 Duan et al. 2006 

● 2002 He et al. 2004 

● 2001–2004 Oanh et al. 2006 

● 2009–2010 Zhao et al. 2013b 

● 2001–2004 Zhang et al. 2007 

● 2002–2003 Xu et al. 2005 

● 2005–2008 Yu et al. 2011 

● 2010 Yu et al. 2013 

● 2003 Yu et al. 2005 

● 2001–2003 Zhang et al. 2010 

● 2009–2010 Zhao et al. 2013a 

● 2008 Gu et al. 2011 

● 2007 Li et al. 2009 

● 2007 Li and Bai 2009 

● 2009–2010 Li et al. 2012 

● 2008 Gu et al. 2010 
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Table S1. Effect of seasonal variation on satellite-derived and ground-level PM2.5 agreement over North America, 2001-2010.  Mean 

and standard deviation of monthly mean agreements is given.  The agreement of simulated seasonality applied to annual mean 

satellite-derived PM2.5 is also given.  Monthly values represent the center month of a three-month temporal range.  Approximately 

1000 locations are used. 

Time 
Period 

Satellite 
Seasonality:

1σ error 
[% + 1 µg/m3] 

Satellite 
Seasonality:

Slope 

Satellite 
Seasonality:

Offset 

Satellite 
Seasonality:

Pearson 
Coefficient 

Simulated 
Seasonality:

1σ error 
[% + 1 µg/m3] 

Simulated 
Seasonality:

Slope 

Simulated 
Seasonality:

Offset 

Simulated 
Seasonality:

Pearson 
Coefficient 

Annual 20 ± 2 1.07 ± 0.10 -1.4 ± 0.7 0.68 ± 0.07 20 ± 2 1.07 ± 0.10 -1.4 ± 0.7 0.68 ± 0.07 
January 36 ± 3 1.47 ± 0.27 -4.9 ± 2.4 0.37 ± 0.06 26 ± 3 0.87 ± 0.11 0.6 ± 0.7 0.48 ± 0.04 
February 33 ± 4 1.54 ± 0.23 -5.4 ± 2.2 0.45 ± 0.08 24 ± 2 0.91 ± 0.09 0.1 ± 0.7 0.57 ± 0.06 
March 28 ± 3 1.49 ± 0.21 -4.7 ± 2.0 0.51 ± 0.08 20 ± 2 0.99 ± 0.10 -0.6 ± 0.8 0.65 ± 0.07 
April 24 ± 3 1.30 ± 0.18 -2.6 ± 1.4 0.59 ± 0.06 19 ± 2 1.03 ± 0.13 -0.7 ± 0.9 0.66 ± 0.08 
May 22 ± 3 1.24 ± 0.18 -2.3 ± 1.5 0.62 ± 0.09 21 ± 3 1.00 ± 0.13 -0.5 ± 0.9 0.62 ± 0.12 
June 23 ± 3 1.23 ± 0.18 -2.7 ± 1.5 0.66 ± 0.12 23 ± 4 0.98 ± 0.12 -0.6 ± 1.0 0.64 ± 0.15 
July 23 ± 3 1.24 ± 0.16 -3.2 ± 1.6 0.68 ± 0.11 24 ± 4 0.94 ± 0.08 -0.4 ± 0.9 0.68 ± 0.14 
August 24 ± 4 1.14 ± 0.21 -2.3 ± 1.6 0.68 ± 0.11 22 ± 4 0.98 ± 0.10 -0.7 ± 0.8 0.71 ± 0.11 
September 25 ± 5 1.06 ± 0.23 -1.5 ± 1.5 0.64 ± 0.10 21 ± 2 1.06 ± 0.16 -0.9 ± 1.0 0.69 ± 0.08 
October 30 ± 5 0.94 ± 0.20 -0.7 ± 1.1 0.53 ± 0.10 24 ± 3 1.10 ± 0.17 -1.2 ± 1.1 0.60 ± 0.06 
November 34 ± 5 0.95 ± 0.15 -0.7 ± 0.8 0.42 ± 0.08 27 ± 4 1.02 ± 0.11 -0.5 ± 0.7 0.49 ± 0.06 
December 37 ± 4 1.05 ± 0.15 -1.3 ± 1.7 0.37 ± 0.07 27 ± 3 0.87 ± 0.10 0.6 ± 0.7 0.45 ± 0.05 
Table S1 summarizes the variation in seasonal agreement between the satellite-derived and ground-based PM2.5 at approximately 1000 

locations in North America.  Seasonal agreement varies with expected patterns of AOD retrieval accuracy, with improved agreement 

during summer months when surface reflectance is better characterized and when seasonal PM2.5 enhancements increase the aerosol 

signal in satellite observations.  We also provide the agreement found when applying GEOS-Chem seasonality to the satellite-derived 

annual means.  Simulated seasonal variation improves monthly satellite-derived PM2.5, particularly in the winter season when satellite 

retrievals can be inhibited by snow-cover.  Seasonal cycles will vary globally, but these results suggest that the impact of snow, cloud 

and reduced sampling may increase the uncertainty of seasonal decadal mean PM2.5 estimates by up to a factor of two relative to 

annual mean values. 
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Table S2. Effect of temporal range on satellite-derived and ground-level PM2.5 agreement over 
North America. Mean and standard deviation of individual temporal comparisons are given (e.g. 
mean and standard deviation of annual agreement when temporal range is 1 year). Sites must be 
active for at least 80% of the temporal range, resulting in ca. 1000 locations used. 

Temporal
Range(yrs) 

1σ error 
[% + 1 µg/m3] 

Slope Offset Pearson 
Coefficient 

1 20 ± 2 1.07 ± 0.10 -1.4 ± 0.7 0.68 ± 0.07 
2 17 ± 2 1.05 ± 0.08 -1.2 ± 0.7 0.72 ± 0.06 
3 17 ± 2 1.04 ± 0.08 -1.2 ± 0.7 0.73 ± 0.05 
4 15 ± 2 1.02 ± 0.06 -1.0 ± 0.5 0.74 ± 0.04 
5 16 ± 1 1.02 ± 0.04 -1.0 ± 0.3 0.75 ± 0.03 
6 15 ± 2 1.01 ± 0.04 -0.9 ± 0.3 0.77 ± 0.03 
7 15 ± 2 1.00 ± 0.04 -0.8 ± 0.3 0.77 ± 0.03 
8 14 ± 1 1.00 ± 0.03 -0.8 ± 0.2 0.78 ± 0.02 
9 14 ± 1 1.00 ± 0.02 -0.8 ± 0.2 0.78 ± 0.02 
10 14 ± 0 1.00 ± 0.00 -0.7 ± 0.0 0.79 ± N/A 
Table S2 evaluates the impact of temporal range on accuracy, comparing mean satellite-derived 

and ground-based PM2.5 over a varying number of years at ca. 1000 locations in North America. 

On average, annual performance is degraded significantly from decadal mean values (r=0.68 vs. 

r=0.79; slope=1.07 vs. 1.00; 1σ error = 20% vs. 14%). Errors in long-term exposure assessment 

increase with decreasing number of measurements from satellite.  Sub-annual agreement of 

three-month running means further increases error by up to a factor of two. Significant 

improvement, however, is found when using as few as three years (r = 0.73; slope = 1.05; 1σ 

error = 17%), although still well below decadal agreement. As a result, the spatial correlations 

obtained over European and global regions (Figures 2 and 3) may indicate comparable 

significance to North America, only reduced by the limited sampling period of available ground-

level observations for comparison. 
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